

FRC Team 1987 The Broncobots

2022 Technical Book

4,208+ Student Hours

24 Students

This student led team designed, built, and programmed this robot. Students designed the robot in onshape and programmed in Java. Mentors stepped in when needed.

TABLE OF CONTENTS

•	Robot Overview	4-5
•	Drive Train	6
•	Collector	7
•	Storage	8
•	Shooter	9
•	Climber	10
•	Programming	11-15

Mystery Machine

DRIVE TRAIN

- 4 Swerve Drive Specialties MK4i Modules
- Powered and Driven by a total of eight Falcon 500 motors
- Modules are inverted for motor protection and space saving

COLLECTOR

- Actuated using two 3/4 bore pneumatic cylinders, each with a 6" stroke
- Three rollers comprised of 2" compliant wheels, 2" mecanum wheels, and 3" compliant wheels
- Intake rollers powered by a singular Falcon 500 with a 1:2.5 reduction
- Provides the driver vision through an onboard camera system

STORAGE

- Two NEO 500s powering a 5:1 reduction
- First and third rollers use 2 inch diameter compliant wheels
- Second and fourth rollers use two 1/4 HD compliant wheels
- Aluminum plates and structure water jetted for tolerance

SHOOTER

- Two Falcon 500s powering a 1:1.2 reduction.
- . Four 4 inch diameter Vex Flywheels in the front.
- Aluminum plates and structure water jetted for tolerance
- Adjustable shooter hood powered by two linear actuators.
- Belt connecting main flywheel axle to rear anti-backspin axles, with 2 inch Stealth compliant wheels.

CLIMBER

- Uses two flipped Climber in a Box modules
- Rigid arms attached directly to structure
- Uses two 3/4 in bore, 6 inch throw pneumatic pistons to rotate telescoping arms
- All hooks made with a combination of 3D printed parts and Lexan
- Rigid arm hooks are spring-loaded using surgical tubing

Software

<u>Drive Train</u>

- Magnetic encoder on each of the four swerve modules to measure steering absolute position.
- Closed loop PID control for autonomous commands.
- Autonomous commands utilize the Path Planner tool to follow paths using motion profiling.
- Odometry fuses data from Falcon internal encoders, CANcoders, and navX2 IMU to track field-relative pose.
- Falcon motors and CANcoders within the drive train are linked via a CANivore, providing a differentiated CAN bus, allowing for more bus bandwidth.

<u>Collector</u>

• The collector is able to be deployed based on the Driver controls. Collector operation ceases upon reaching max storage capacity or button is released.

Software

<u>Storage</u>

- Line-break sensors placed on the entrance and exit to monitor for cargo.
- Collection will stop once the max cargo capacity is reached (2 cargo).
- Shooting will not occur unless cargo load is greater than 0
- Cargo elements are only released to the shooter once RPM has reached the target speed.

<u>Shooter</u>

- The shooter RPM is determined based on odometry coupled with Limelight[™] data through an interpolated tree map.
- The variable-geometry hood works in tandem with the shooter speed to control the arc of shots. The shooter is designed to prioritize Upper Hub shots.

Software

<u>Vision</u>

- The Limelight[™] camera is utilized for automatic targeted shooting in both autonomous and tele-operated modes.
- An onboard camera positioned above the collector provides a real-time image while collecting far from the Driver Station or where otherwise not visible.
- Visuals from the Limelight[™] allows for further aid in aligning with the hub.

<u>Climber</u>

- The climber is coded to operate in the safest way possible, with step-by-step commands for the climb sequence divided amongst four separate buttons
- Fails-safes are built into the code to prevent climber arm extension during regular match time.

Software

<u>Drivers</u>

- Driver uses Xbox controller with commands and command groups assigned to buttons.
- The Driver receives haptic feedback. While collecting cargo and aligning for a shot, the Driver controller will "rumble" until the target angle is reached.
- In the event that the telescoping arms do not reach the required height, the Driver controller is outfitted with commands located on the D-Pad to incrementally increase and decrease the arms.
- The Co-driver uses many alternative commands to solve the issues of a jam in the storage by releasing cargo from both the entrance and exit.
- Buttons situated on the Co-driver controller are able to increment and decrement the cargo count in order to match the actual count.

Software

Scan to see our robot code

URL: https://github.com/FRCTeam1987/Robot2022

Organization: FRCTeam1987

